Solutions 8

Exercise 2.4

a) The likelihood ratio function takes the form

$$
\begin{equation*}
L(y)=\frac{f_{Y}\left(y \mid H_{1}\right)}{f_{Y}\left(y \mid H_{0}\right)}=\sqrt{\frac{\pi}{2}} e^{-\frac{1}{2} y^{2}+|y|} \tag{1}
\end{equation*}
$$

b) Firstly, plot the curve as follows:

Figure 1: Plot of likelihood ratio function $L(y)$.

- 1) When $\tau \leq \sqrt{\frac{\pi}{2}} e^{-\frac{1}{2}}$, the decision is H_{1} whatever the y is.
- 2) When $\sqrt{\frac{\pi}{2}} e^{-\frac{1}{2}} \leq \tau \leq \sqrt{\frac{\pi}{2}}$, the decision is

$$
\begin{cases}\text { decision }=1 & y \in(-\infty,-1-\alpha) \bigcup(\alpha-1,1-\alpha) \bigcup(1+\alpha,+\infty) \tag{2}\\ \text { decision }=0 & y \in(-1-\alpha, \alpha-1) \bigcup(1-\alpha, 1+\alpha)\end{cases}
$$

where $\alpha=\sqrt{\ln \left(\frac{2 \tau^{2} e}{\pi}\right)}$.

- 3) When $\tau>\sqrt{\frac{\pi}{2}}$, the decision is

$$
\begin{cases}\text { decision }=1 & y \in(-\infty,-1-\alpha) \bigcup(1+\alpha,+\infty) \tag{3}\\ \text { decision }=0 & y \in(-1-\alpha, 1+\alpha)\end{cases}
$$

where $\alpha=\sqrt{\ln \left(\frac{2 \tau^{2} e}{\pi}\right)}$.

Exercise 2.5

a)

$$
\begin{equation*}
L(\mathbf{y})=\prod_{k=1}^{N} \frac{f\left(y_{k} \mid H_{1}\right)}{f\left(y_{k} \mid H_{0}\right)}=e^{-\lambda \sum_{k=1}^{N}\left[\left|y_{k}-A\right|-\left|y_{k}\right|\right]} \tag{4}
\end{equation*}
$$

Then, we can derive the LRT as

$$
\begin{equation*}
\frac{1}{N} \sum_{k=1}^{N}\left[\left|y_{k}\right|-\left|y_{k}-A\right|\right] \underset{H_{0}}{{ }_{H_{1}}} \frac{\ln \tau}{N \lambda} \triangleq \eta . \tag{5}
\end{equation*}
$$

The lefthand of the equation is the sufficient statistic for the LRT.

- 1) When $y_{k} \leq 0$:

$$
\begin{equation*}
\left|y_{k}\right|-\left|y_{k}-A\right|=-A \tag{6}
\end{equation*}
$$

- 2) When $y_{k} \geq A$:

$$
\begin{equation*}
\left|y_{k}\right|-\left|y_{k}-A\right|=A \tag{7}
\end{equation*}
$$

- 3) When $0 \leq y_{k} \leq A$:

$$
\begin{equation*}
\left|y_{k}\right|-\left|y_{k}-A\right|=2 y_{k}-A \tag{8}
\end{equation*}
$$

Therefore, we can express the sufficient statistic as follows:

$$
\begin{equation*}
S=\frac{1}{N} \sum_{k=1}^{N} c\left(Y_{k}-\frac{A}{2}\right) \tag{9}
\end{equation*}
$$

where $c(\cdot)$ is the symmetric clipping function.
b) When the two hypotheses are equally likely and we seek to minimize the probability of error, so the Bayesian costs are given by $C_{i j}=1-\delta_{i j}$, the Bayesian threshold $\tau=1$, then $\eta=0$.
c) The clipping function $c(\cdot)$ truncates the high and low values of centered observations $Y_{k}-\frac{A}{2}$ to prevent them from dominating the sum S.

Exercise 2.7

a)

$$
\begin{equation*}
L(k)=\frac{q_{1}^{k}\left(1-q_{1}\right)^{n-k}}{q_{0}^{k}\left(1-q_{0}\right)^{n-k}} \sum_{H_{0}}^{\stackrel{H_{1}}{\gtrless}} \tau=\frac{\pi_{0}}{\pi_{1}} \tag{10}
\end{equation*}
$$

The LRT is

$$
\begin{equation*}
k \sum_{H_{0}}^{H_{1}} \frac{\ln \left(\frac{\pi_{0}\left(1-q_{0}\right)^{n}}{\pi_{1}\left(1-q_{1}\right)^{n}}\right)}{\ln \left(\frac{q_{1}\left(1-q_{0}\right)}{q_{0}\left(1-q_{1}\right)}\right)} \triangleq \eta \tag{11}
\end{equation*}
$$

b) According to the LRT, we derive the four cases of $\left(P_{F}, P_{D}\right)$ as following table.

η	P_{F}	P_{D}
-1	1	1
0	$2 q_{0}\left(1-q_{0}\right)+q_{0}^{2}$	$2 q_{1}\left(1-q_{1}\right)+q_{1}^{2}$
1	q_{0}^{2}	q_{1}^{2}
2	0	0

Exercise 2.8

a) The Bayesian test can be expressed as

$$
\begin{equation*}
L(y)=\frac{f\left(y \mid H_{1}\right)}{f\left(y \mid H_{0}\right)}=2 e^{-|y|} \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \tau, \tag{12}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
|y| \sum_{H_{1}}^{H_{0}} \ln \left(\frac{2}{\tau}\right) \triangleq \eta . \tag{13}
\end{equation*}
$$

b) The probability of false alarm and detection can be expressed as

$$
\begin{align*}
P_{F} & =\int_{-\ln \frac{2}{\tau}}^{\ln \frac{2}{2}} \frac{1}{2} e^{-|y|} d y \\
& =\frac{1}{2} \times\left[\left.e^{y}\right|_{-\ln \frac{2}{\tau}} ^{0}-\left.e^{-y}\right|_{0} ^{\ln \frac{2}{\tau}}\right] \tag{14}\\
& =1-\frac{\tau}{2} \\
P_{D} & =\int_{-\ln \frac{2}{\tau}}^{\ln \frac{2}{\tau}} e^{-2|y|} d y \\
& =\left.\frac{1}{2} e^{2 y}\right|_{-\ln \frac{2}{\tau}} ^{0}-\left.\frac{1}{2} e^{-2 y}\right|_{0} ^{\ln \frac{2}{\tau}} \tag{15}\\
& =1-\frac{\tau^{2}}{4}
\end{align*}
$$

c) Eliminate the τ, we derive

$$
\begin{equation*}
P_{D}=-P_{F}^{2}+2 P_{F} . \tag{16}
\end{equation*}
$$

Then, plot the ROC as
d) To design a Neyman-Pearson test with probability of false alarm less or equal to α,

we must in fact select $P_{F}=\alpha$ which, after substitution, yields

$$
\begin{equation*}
\tau=2(1-\alpha) . \tag{17}
\end{equation*}
$$

Exercise 2.10
a)

$$
L(y)= \begin{cases}4 y & 0 \leq y \leq \frac{1}{2} \tag{18}\\ 4(1-y) & \frac{1}{2} \leq y \leq 1\end{cases}
$$

- 1) When $\tau>2$: y always detect as H_{0}.
- 2) When $\tau \leq 2$:
- i) When $y \in\left[0, \frac{1}{2}\right]: y \underset{H_{0}}{\stackrel{H_{1}}{\gtrless} \frac{\tau}{4}}$.
- ii) When $y \in\left[\frac{1}{2}, 1\right]: y \underset{H_{1}}{\stackrel{H_{0}}{\gtrless}} 1-\frac{\tau}{4}$.
b)
- 1) When $\tau>2: P_{D}=P_{F}=0$.
- 2) When $\tau \leq 2$:

$$
\begin{gather*}
P_{F}=\int_{\frac{\tau}{4}}^{\frac{1}{2}} 1 d y+\int_{\frac{1}{2}}^{1-\frac{\tau}{4}} 1 d y=1-\frac{\tau}{2} \tag{19}\\
P_{D}=\int_{\frac{\tau}{4}}^{\frac{1}{2}} 4 y d y+\int_{\frac{1}{2}}^{1-\frac{\tau}{4}} 4(1-y) d y=1-\frac{\tau^{2}}{4} \tag{20}
\end{gather*}
$$

c) Eliminate the τ, we derive

$$
\begin{equation*}
P_{D}=-P_{F}^{2}+2 P_{F} . \tag{21}
\end{equation*}
$$

Then, plot the ROC as
d) To design a Neyman-Pearson test with probability of false alarm less or equal to α,

we must in fact select $P_{F}=\alpha$ which, after substitution, yields

$$
\begin{equation*}
\tau=2(1-\alpha) \tag{22}
\end{equation*}
$$

