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Exercise 2.4

a) The likelihood ratio function takes the form

L(y) =
fY (y|H1)

fY (y|H0)
=

√
π

2
e−

1
2
y2+|y| (1)

b) Firstly, plot the curve as follows:

Figure 1: Plot of likelihood ratio function L(y).

• 1) When τ ≤
√

π
2
e−

1
2 , the decision is H1 whatever the y is.

• 2) When
√

π
2
e−

1
2 ≤ τ ≤

√
π
2
, the decision isdecision = 1 y ∈ (−∞,−1− α)

⋃
(α− 1, 1− α)

⋃
(1 + α,+∞)

decision = 0 y ∈ (−1− α, α− 1)
⋃

(1− α, 1 + α)
(2)
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where α =
√

ln(2τ
2e
π

).

• 3) When τ >
√

π
2
, the decision isdecision = 1 y ∈ (−∞,−1− α)

⋃
(1 + α,+∞)

decision = 0 y ∈ (−1− α, 1 + α)
(3)

where α =
√

ln(2τ
2e
π

).

Exercise 2.5

a)

L(y) =
N∏
k=1

f(yk|H1)

f(yk|H0)
= e−λ

∑N
k=1[|yk−A|−|yk|] (4)

Then, we can derive the LRT as

1

N

N∑
k=1

[|yk| − |yk − A|]
H1

R
H0

ln τ

Nλ
, η. (5)

The lefthand of the equation is the sufficient statistic for the LRT.

• 1) When yk ≤ 0:

|yk| − |yk − A| = −A (6)

• 2) When yk ≥ A:

|yk| − |yk − A| = A (7)

• 3) When 0 ≤ yk ≤ A:

|yk| − |yk − A| = 2yk − A (8)

Therefore, we can express the sufficient statistic as follows:

S =
1

N

N∑
k=1

c(Yk −
A

2
) (9)

where c(·) is the symmetric clipping function.

b) When the two hypotheses are equally likely and we seek to minimize the probability

of error, so the Bayesian costs are given by Cij = 1 − δij, the Bayesian threshold τ = 1,

then η = 0.

c) The clipping function c(·) truncates the high and low values of centered observations

Yk − A
2

to prevent them from dominating the sum S.

Exercise 2.7
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a)

L(k) =
qk1(1− q1)n−k

qk0(1− q0)n−k
H1

R
H0

τ =
π0
π1

(10)

The LRT is

k
H1

R
H0

ln
(
π0(1−q0)n
π1(1−q1)n

)
ln
(
q1(1−q0)
q0(1−q1)

) , η (11)

b) According to the LRT, we derive the four cases of (PF , PD) as following table.

η PF PD

−1 1 1

0 2q0(1− q0) + q20 2q1(1− q1) + q21

1 q20 q21

2 0 0

Exercise 2.8

a) The Bayesian test can be expressed as

L(y) =
f(y|H1)

f(y|H0)
= 2e−|y|

H1

R
H0

τ, (12)

or equivalently

|y|
H0

R
H1

ln(
2

τ
) , η. (13)

b) The probability of false alarm and detection can be expressed as

PF =

∫ ln 2
τ

− ln 2
τ

1

2
e−|y|dy

=
1

2
×
[
ey|0− ln 2

τ
− e−y|ln

2
τ

0

]
= 1− τ

2

(14)

PD =

∫ ln 2
τ

− ln 2
τ

e−2|y|dy

=
1

2
e2y|0− ln 2

τ
− 1

2
e−2y|ln

2
τ

0

= 1− τ 2

4

(15)

c) Eliminate the τ , we derive

PD = −P 2
F + 2PF . (16)

Then, plot the ROC as

d) To design a Neyman-Pearson test with probability of false alarm less or equal to α,
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we must in fact select PF = α which, after substitution, yields

τ = 2(1− α). (17)

Exercise 2.10

a)

L(y) =

4y 0 ≤ y ≤ 1
2

4(1− y) 1
2
≤ y ≤ 1

(18)

• 1) When τ > 2: y always detect as H0.

• 2) When τ ≤ 2:

– i) When y ∈ [0, 1
2
]: y

H1

R
H0

τ
4
.

– ii) When y ∈ [1
2
, 1]: y

H0

R
H1

1− τ
4
.

b)

• 1) When τ > 2: PD = PF = 0.

• 2) When τ ≤ 2:

PF =

∫ 1
2

τ
4

1dy +

∫ 1− τ
4

1
2

1dy = 1− τ

2
(19)

PD =

∫ 1
2

τ
4

4ydy +

∫ 1− τ
4

1
2

4(1− y)dy = 1− τ 2

4
(20)

4



c) Eliminate the τ , we derive

PD = −P 2
F + 2PF . (21)

Then, plot the ROC as

d) To design a Neyman-Pearson test with probability of false alarm less or equal to α,

we must in fact select PF = α which, after substitution, yields

τ = 2(1− α). (22)
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